Fuzzy Logic Based Optimization of Capacitor Value for Single Phase Open Well Submersible Induction Motor

نویسندگان

  • R. Subramanian
  • S. N. Sivanandam
چکیده

Purpose – The aim of this paper is to optimize the capacitor value of a single phase open well submersible motor operating under extreme voltage conditions using fuzzy logic optimization technique and compared with no-load volt-ampere method. This is done by keeping the displacement angle (α) between main winding and auxiliary winding near 90, phase angle (φ) between the supply voltage and line current near 0. The optimization work is carried out by using Fuzzy Logic Toolbox software built on the MATLAB technical computing environment with Simulink software. Findings – The optimum capacitor value obtained is used with a motor and tested for different supply voltage conditions. The vector diagrams obtained from the experimental test results indicates that the performance is improved from the existing value. Originality/value – This method will be highly useful for the practicing design engineers in selecting the optimum capacitance value for single phase induction motors to achieve the best performance for operating at extreme supply voltage conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A FUZZY-BASED SPEED CONTROLLER FOR IMPROVEMENT OF INDUCTION MOTOR'S DRIVE PERFORMANCE

Induction motors (IMs) are widely used in many industrial applications due to their robustness, low cost, simplicity and relative good efficiency. One of the major considerations for IMs is their speed control. PI (proportional-integrator) controllers are usually used as speed controller. Adjusting the gain of PI controller is time-consuming which needs thorough considerations. Hence, fuzzy con...

متن کامل

Sensorless Model Predictive Force Control with a Novel Weight Coefficients for 3-Phase 4-Switch Inverter Fed Linear Induction Motor Drives

The sensorless model predictive force control (SMPFC) is a strong method for controlling the drives of three-phase 4(6)-switch inverter linear induction motors. This kind of inverter can be employed for fault tolerant control in order to solve the problem of open/short circuit in 6-switch inverters (B6). This paper proposed a method for the SMPFC of a linear induction motor (LIM) with a 4-switc...

متن کامل

Efficiency Improvement of Induction Motor using Fuzzy-Genetic Algorithm

In most industrial zones, electric energy is one of the most important energy sources. Since electrical motors are the main energy consumers of industrial factories, consumption optimization in these motors can be considered as a main option related to energy saving. One very effective way to reduce the consumption of these equipment is to use a motor speed controllers or drives. Since the loss...

متن کامل

Design Optimization of Electric Motors by Multiobjective Fuzzy Genetic Algorithms

This paper presents a multiobjective fuzzy genetic algorithm optimization approach to design the submersible induction motor with two objective functions: the full load torque and the manufacturing cost. A multiobjective fuzzy optimization problem is formulated and solved using a genetic algorithm. The optimally designed motor is compared with an industrial motor having the same ratings. The re...

متن کامل

Seven-Level Direct Torque Control of Induction Motor Based on Artificial Neural Networks with Regulation Speed Using Fuzzy PI Controller

In this paper, the author proposes a sensorless direct torque control (DTC) of an induction motor (IM) fed by seven-level NPC inverter using artificial neural networks (ANN) and fuzzy logic controller. Fuzzy PI controller is used for controlling the rotor speed and ANN applied in switching select stator voltage. The control method proposed in this paper can reduce the torque, stator flux and to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011